Package: bcaquiferdata (via r-universe)

August 18, 2024
Title BC Aquifer data tools
Version 0.0.3

Description Set of tools for processing BC Aquifer lithology and yield
data.

License Apache License (>=2)
Encoding UTF-8

Roxygen list(markdown = TRUE)
RoxygenNote 7.2.3

Imports bcmaps (>= 1.2.0), dplyr (>= 1.0.7), httr (>= 1.4.2), janitor
(>=2.1.0), lubridate (>= 1.9.2), magrittr, purrr (>= 0.3.4),
rappdirs (>= 0.3.3), readr (>= 2.1.1), rlang (>= 0.4.12), shiny
(>= 1.7.2), shinyFiles (>= 0.9.3), bslib (>= 0.5.0), sf (>=
0.9.8), stars (>= 0.5.3), stringdist (>= 0.9.8), stringr (>=
1.4.0), tidyr >=1.1.4), fs (>=1.6.1), DT (>= 0.23), ggplot2
(>=3.3.5), ggthemes (>= 4.2.4), shinyjs (>= 2.1.0), htmltools
(>=0.5.7), markdown, rmarkdown, wk (>=0.9.1)

Depends R (>=4.0)

Suggests knitr, gt, testthat (>= 3.0.0)
LazyData true
Config/testthat/edition 3

URL http://bcgov.github.io/bcaquiferdata/,
https://github.com/bcgov/bcaquiferdata

VignetteBuilder knitr

Repository https://steffilazerte.r-universe.dev

RemoteUrl https://github.com/bcgov/beaquiferdata

RemoteRef HEAD

RemoteSha e3b3a443606eb45f4ef0ce027e¢3b285215b7de6d

http://bcgov.github.io/bcaquiferdata/
https://github.com/bcgov/bcaquiferdata

2 cache_clean

Contents
AQLAPD -+« e e e e e e e e e e e 2
cache_clean e 2
data_read e e 3
data_update 4
dem_region e e e e e e 4
flags . . . o e e 6
Lth_fiX e 6
tleS . . L e 7
wells_elev e e 8
wells_export. e 9
wells_subset e e 10
wells_yield 11

Index 12

ag_app Launch Aquifer Data Shiny App
Description

This app allows you to load a shapefile and filter aquifer/well data according to region, explore data,
and export cleaned files.

Usage

ag_app()

Examples

aq_app()

cache_clean Clean cache

Description

Removes data cache

Usage

cache_clean(bcmaps_cded = FALSE)

data_read 3

Arguments

bcmaps_cded Logical. Whether or not to also remove CDED files cached with the bcmaps
package. These are used by bcaquifertools for acquiring TRIM data, but may
also be cached for use by other workflows.

Examples

cache_clean()
cache_clean(bcmaps_cded = TRUE)

data_read Download, Update, and/or load data

Description

This function downloads, updates or loads locally stored data. Currently this function returns wells,
wells_sf, or lithology data. Note that these data are originally from GWELLS, but are cleaned
and summarized for use in the bcaquiferdata package. For example wells_sf is a spatial version of
the data, and 1ithology is a cleaned and standardized version of lithology. wells also contains the
new standardized lithology data, along with the original lithology observations and intermediate
classification steps to simplify error tracing.

Usage
data_read(type, update = FALSE, permission = FALSE)

Arguments
type Character. Type of data to return, one of wells, wells_sf, or 1ithology
update Logical. Force update of the data?
permission Logical. Permission to create the cache folder. If FALSE, user is asked for per-
mission, if TRUE, permission is implied.
Details

Under normal circumstances, users will not need to use this function as it is used internally by the
main workflow functions. However, users may wish to overview entire datasets.

Bear in mind that the lithology cleaning and standardizing, while better than the original data, will
almost certainly still have errors!

Value

Data frame or spatial features object of the requested data.

Examples

wells <- data_read("wells")

4 dem_region

data_update Update cached data

Description

Update the GWELLSs data stored locally.

Usage
data_update(type = "all”, download = TRUE, permission = FALSE)

Arguments
type Character. Type of data to update. One of "all", "wells", "lithology"
download Logical. Whether to re-download and process the data (TRUE), or just re-process
it (FALSE).
permission Logical. Permission to create the cache folder. If FALSE, user is asked for per-
mission, if TRUE, permission is implied.
Examples

data_update(type = "lithology")

dem_region Fetch and trim DEM of a region

Description

This function takes a shape file of a region and creates a DEM of the region. Lidar data is stored
locally as tiles. Tiles are only downloaded if they don’t already exist unless only_new = FALSE.
TRIM data is obtained via the bcmaps package and stored locally as tiles. Note: TRIM elevation is
coarser than Lidar Use Lidar unless it is missing for your region of interest.

Usage
dem_region(
region,
type = "lidar",
buffer = 1

lidar_dir = NULL,
only_new = TRUE,
progress = httr: :progress()

dem_region

Arguments
region

type

buffer

lidar_dir

only_new

progress

Details

Lidar tiles are the n
to discuss your use

Value

sf simple features object. Shape file of the region of interest.

Character. Type of DEM to download, either "lidar" or "trim". Use Lidar unless
unavailable.

Numeric. Percent buffer to apply to the region spatial file before cropping the
DEM data to match. Increase this value if you find that wells on the edge of
your area aren’t been matched to elevations when using wells_elev().

Character. File path of where Lidar tiles should be stored. Defaults to the cache
directory. Only applies when type = "lidar".

Logical. Whether to download all Lidar tiles, or only new tiles that don’t exist
locally. Defaults to TRUE. Only apples when type = "lidar".

Function. Progress bar to use. Generally leave as is.

ewest tile available. If you have reason to need a historical file, contact the team
case.

stars spatiotemporal array object

Data Source

Lidar data is obtained from the LidarBC portal. The tiles data frame contains is an internally

created data frame

listing tiles and their respective download locations. Tiles to download are

selected based on overlap between map tiles and the provided shapefile (region). These Lidar tiles
can be browsed and downloaded manually via the LidarBC Open LiDAR Data Portal

The grid of map tiles is obtained from the BC Data Catalogue, BCGS 1:20,000 Grid

TRIM data is obtai

ned via the becmaps package from the BC government Data Catalogue based on

overlap between map tiles and the provided shapefile (region).

Examples

library(sf)

Load a shape fi
creek_sf <- st_re

Fetch Lidar DEM
creek_lidar <- de

plot(creek_lidar)

Fetch TRIM DEM

le defining the region of interest
ad("misc/data/Clinton_Creek.shp")

m_region(creek_sf)

creek_trim <- dem_region(creek_sf, type = "trim")

https://governmentofbc.maps.arcgis.com/apps/MapSeries/index.html?appid=d06b37979b0c4709b7fcf2a1ed458e03
https://catalogue.data.gov.bc.ca/dataset/a61976ac-d8e8-4862-851e-d105227b6525
https://catalogue.data.gov.bc.ca/dataset/7b4fef7e-7cae-4379-97b8-62b03e9ac83d

6 lith_fix

plot(creek_trim)

flags Flags

Description

A glossary of flag terms

Usage
flags

Format
flags:
A data frame with 10 rows and 2 columns:

Flag flag name
Description Flag description

lith_fix Fix lithology descriptions

Description

Clean and categorize lithology descriptions into primary, secondary, tertiary and final lithology cat-
egories. Generally this function is used internally when loading and cleaning GWELLS lithology.

Usage
lith_fix(file = "lithology.csv"”, desc = NULL)

Arguments
file Character. Lithology file name stored in cache
desc Character. Text string to convert (overrides file).
Details

However statements can be tested directly with this function to see how it works and for trou-
bleshooting.

tiles

Value

Data frame of lithology categorizations

Examples

lith_fix(desc = "sandy gravel")

basic spell checks
lith_fix(desc = "saandy gravel”)

tiles tiles

Description

A spatial data frame of map tiles with corresponding links to Lidar tiles.

Usage

tiles

Format

tiles:
A data frame with 7,129 rows and 5 columns:

map_tile Tile name
geometry Spatial data
utm Projection
tile_name Lidar tile name
url Link to Lidar tile

Details
The spatial grid of map tiles is obtained from the BC Data Catalogue, BCGS 1:20,000 Grid

Links to Lidar tile urls are extracted from the list at the LidarBC Open LiDAR Data Portal

https://catalogue.data.gov.bc.ca/dataset/a61976ac-d8e8-4862-851e-d105227b6525
https://governmentofbc.maps.arcgis.com/apps/MapSeries/index.html?appid=d06b37979b0c4709b7fcf2a1ed458e03

8 wells_elev

wells_elev Subset wells and add elevation

Description

This function takes a region shape file and the DEM of a region (output of dem_region()), subsets
the wells data (from GWELLS) to this region and adds the elevation data.

Usage
wells_elev(wells_sub, dem, update = FALSE)

Arguments
wells_sub sf spatial data frame. Subset of wells data output by wells_subset()
dem stars simple features object. Output of dem_region().
update Logical. Force update of the data?

Value

sf spatial data frame

Examples

library(sf)
library(ggplot2)

Load a shape file defining the region of interest
creek_sf <- st_read("misc/data/Clinton_Creek.shp")

Get wells within this region
creek_wells <- wells_subset(creek_sf)

Fetch Lidar DEM
creek_lidar <- dem_region(creek_sf)

Collect wells in this region with added elevation from Lidar
creek_wells <- wells_elev(creek_wells, creek_lidar)

ggplot() +
geom_sf(data = creek_sf) +
geom_sf(data = creek_wells, aes(colour = elev), size = 0.5,
fill = "NA", show.legend = FALSE) +
coord_sf(datum = st_crs(3005)) # BC Albers

OR Fetch TRIM DEM
creek_trim <- dem_region(creek_sf, type = "trim")

wells_export 9

Collect wells in this region with added elevation from Lidar
creek_wells <- wells_elev(creek_wells, creek_trim)

ggplot() +
geom_sf(data = creek_sf) +
geom_sf(data = creek_wells, aes(colour = elev), size = 0.5,
fill "NA", show.legend = FALSE) +
coord_sf(datum = st_crs(3005)) # BC Albers

wells_export Export wells data for use in Strater and Voxler

Description

Export wells data for use in Strater and Voxler

Usage
wells_export(wells_sub, id, type, dir = ".", preview = FALSE)
Arguments
wells_sub Data frame. Output of wells_elev()
id Character. Id to prepend to all output files e.g., "id_lith.csv"
type Character. Format in which to export. One of "strater", "voxler", "archydro",
"leapfrog", or "surfer" (case-insensitive).
dir Character. Directory where files should be exported to. Defaults to working
directory.
preview Logical. Whether to preview the exports (TRUE, return a list of data frames) or
to actually export the data (FALSE, write the necessary files to the dir folder.
Value

If preview = FALSE, a vector of file names, if preview = TRUE, a list of data frames.

Examples

library(sf)

Load a shape file defining the region of interest
creek <- st_read("misc/data/Clinton_Creek.shp")

Get wells within this region
creek_wells <- wells_subset(creek)

Fetch Lidar DEM

10 wells_subset

creek_lidar <- dem_region(creek)

Collect wells in this region with added elevation from Lidar
creek_wells <- wells_elev(creek_wells, creek_lidar)

Preview data for Strater

p <- wells_export(creek_wells, id = "clinton”, type = "strater”, preview = TRUE)
names(p)

pL["strater_lith"]]

p[["strater_collars"]]

pL["strater_wells"]]

Export data for Strater
wells_export(creek_wells, id = "clinton”, type = "strater")

Export Arc Hydro
wells_export(creek_wells, id = "clinton”, type = "archydro")

Export Surver

wells_export(creek_wells, id = "clinton”, type = "surfer")
wells_subset Subset wells to region
Description

Filter the GWELLS data returning only wells within the provided shapefile.

Usage
wells_subset(region, update = FALSE)

Arguments
region sf simple features object. Shape file of the region of interest.
update Logical. Force update of the data?

Examples
library(sf)

Load a shape file defining the region of interest
creek_sf <- st_read("misc/data/Clinton_Creek.shp")

Get wells within this region
creek_wells <- wells_subset(creek_sf)

wells_yield 11

wells_yield Add yield lithology data to wells subset

Description

Yield records are extracted from lithology observations and added to the wells data.

Usage

wells_yield(wells_sub)

Arguments

wells_sub sf spatial data frame. Subset of wells data output by wells_subset()

Value

Data frame or sf spatial data frame with wells data and added yield from lithology.

Examples

library(sf)

Load a shape file defining the region of interest
creek_sf <- st_read("misc/data/Clinton_Creek.shp")

Get wells within this region
creek_wells <- wells_subset(creek_sf)

Get yield data for these wells
creek_yield <- wells_yield(creek_wells)

Index

x datasets
flags, 6
tiles, 7

aq_app, 2

cache_clean, 2

data_read, 3
data_update, 4
dem_region, 4

flags, 6
lith_fix, 6
tiles, 7

wells_elev, 8
wells_export, 9

wells_subset, 10

wells_yield, 11

12

	aq_app
	cache_clean
	data_read
	data_update
	dem_region
	flags
	lith_fix
	tiles
	wells_elev
	wells_export
	wells_subset
	wells_yield
	Index

