--- title: "Climate Normals" author: "Steffi LaZerte" date: "2024-11-12" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Climate Normals} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ## Downloading Climate Normals Climate Normals and Averages describe the average climate conditions specific to a particular location. These can be downloaded from Environment and Climate Change Canada using the `normals_dl()` function. First we'll load the `weathercan` package for downloading the data and the `tidyr` package for unnesting the data (see below). ``` r library(weathercan) library(tidyr) library(dplyr) library(naniar) # For exploring missing values ``` To download climate normals, we'll first find the stations we're interested in using the `stations_search()` function. We'll use the `normals_years = "current"` argument to filter to only stations with available climate normals for the `1981-2010` year range. ``` r stations_search("Winnipeg", normals_years = "current") ``` ``` ## # A tibble: 1 × 13 ## prov station_name station_id climate_id WMO_id TC_id lat lon elev tz normals ## ## 1 MB WINNIPEG RICHA… 3698 5023222 71852 YWG 49.9 -97.2 239. Etc/… TRUE ``` Let's look at the climate normals from this station in Winnipeg, MB. Note that unlike the `weather_dl()` function, the `normals_dl()` function requires `climate_id` not `station_id`. By default the normals are downloaded for the years "1981-2010" (currently 1981-2010 and 1971-2000 are the only year ranges available) ``` r n <- normals_dl(climate_ids = "5023222") n ``` ``` ## # A tibble: 1 × 7 ## prov station_name climate_id normals_years meets_wmo normals frost ## ## 1 MB WINNIPEG RICHARDSON INT'L A 5023222 1981-2010 TRUE ``` Because there are two different types of climate normals (weather measurements and first/last frost dates), the data are nested as two different datasets. We can see that the Airport (Richardson Int'l) has 197 average weather measurements/codes as well as first/last frost dates. We can also see that this station has data quality sufficient to meet the WMO standards for temperature and precipitation (i.e. both these measurements have code >= A). See the [ECCC calculations document](https://collaboration.cmc.ec.gc.ca/cmc/climate/Normals/Canadian_Climate_Normals_1981_2010_Calculation_Information.pdf) for more details. To extract either data set we can use the `unnest()` function from the `tidyr` package. ``` r normals <- unnest(n, normals) frost <- unnest(n, frost) ``` Note that this extracts the measurements for all three stations (in the case of the `normals` data frame), but not all measurements are available for each station ``` r normals ``` ``` ## # A tibble: 13 × 203 ## prov station_name climate_id normals_years meets_wmo period temp_daily_average ## ## 1 MB WINNIPEG RICHARDSON… 5023222 1981-2010 TRUE Jan -16.4 ## 2 MB WINNIPEG RICHARDSON… 5023222 1981-2010 TRUE Feb -13.2 ## 3 MB WINNIPEG RICHARDSON… 5023222 1981-2010 TRUE Mar -5.8 ## 4 MB WINNIPEG RICHARDSON… 5023222 1981-2010 TRUE Apr 4.4 ## 5 MB WINNIPEG RICHARDSON… 5023222 1981-2010 TRUE May 11.6 ## 6 MB WINNIPEG RICHARDSON… 5023222 1981-2010 TRUE Jun 17 ## 7 MB WINNIPEG RICHARDSON… 5023222 1981-2010 TRUE Jul 19.7 ## 8 MB WINNIPEG RICHARDSON… 5023222 1981-2010 TRUE Aug 18.8 ## 9 MB WINNIPEG RICHARDSON… 5023222 1981-2010 TRUE Sep 12.7 ## 10 MB WINNIPEG RICHARDSON… 5023222 1981-2010 TRUE Oct 5 ## 11 MB WINNIPEG RICHARDSON… 5023222 1981-2010 TRUE Nov -4.9 ## 12 MB WINNIPEG RICHARDSON… 5023222 1981-2010 TRUE Dec -13.2 ## 13 MB WINNIPEG RICHARDSON… 5023222 1981-2010 TRUE Year 3 ``` To visualize missing data we can use the `gg_miss_var()` function from the `naniar` package. ``` r select(normals, -contains("_code")) %>% # Remove '_code' columns gg_miss_var(facet = station_name) ``` ``` r suppressWarnings({select(normals, -contains("_code")) %>% # Remove '_code' columns gg_miss_var(facet = station_name)}) ```
plot of chunk unnamed-chunk-7

plot of chunk unnamed-chunk-7

Let's take a look at the frost data. ``` r if("normals" %in% names(frost)) frost <- select(frost, -normals) # tidyr v1 glimpse(frost) ``` ``` ## Rows: 7 ## Columns: 13 ## $ prov "MB", "MB", "MB", "MB", "MB", "MB", "MB" ## $ station_name "WINNIPEG RICHARDSON INT'L A", "WINNIPEG R… ## $ climate_id "5023222", "5023222", "5023222", "5023222"… ## $ normals_years "1981-2010", "1981-2010", "1981-2010", "19… ## $ meets_wmo TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE ## $ frost_code "A", "A", "A", "A", "A", "A", "A" ## $ date_first_fall_frost 265, 265, 265, 265, 265, 265, 265 ## $ date_last_spring_frost 143, 143, 143, 143, 143, 143, 143 ## $ length_frost_free 121, 121, 121, 121, 121, 121, 121 ## $ prob "10%", "25%", "33%", "50%", "66%", "75%", … ## $ prob_last_spring_temp_below_0_on_date 158, 152, 148, 144, 140, 137, 129 ## $ prob_first_fall_temp_below_0_on_date 255, 259, 261, 265, 268, 270, 276 ## $ prob_length_frost_free 96, 109, 114, 119, 126, 129, 141 ``` ### Finding stations with specific measurements The include data frame, `normals_measurements` contains a list of stations with their corresponding measurements. Be aware that this data might be out of date! ``` r normals_measurements ``` ``` ## # A tibble: 307,891 × 5 ## prov station_name climate_id normals measurement ## ## 1 AB HORBURG 301C3D4 1981-2010 temp_daily_average ## 2 AB HORBURG 301C3D4 1981-2010 temp_daily_average_code ## 3 AB HORBURG 301C3D4 1981-2010 temp_sd ## 4 AB HORBURG 301C3D4 1981-2010 temp_sd_code ## 5 AB HORBURG 301C3D4 1981-2010 temp_daily_max ## 6 AB HORBURG 301C3D4 1981-2010 temp_daily_max_code ## 7 AB HORBURG 301C3D4 1981-2010 temp_daily_min ## 8 AB HORBURG 301C3D4 1981-2010 temp_daily_min_code ## 9 AB HORBURG 301C3D4 1981-2010 temp_extreme_max ## 10 AB HORBURG 301C3D4 1981-2010 temp_extreme_max_code ## # ℹ 307,881 more rows ``` For example, if you wanted all `climate_id`s for stations that have data on soil temperature for 1981-2010 normals: ``` r normals_measurements %>% filter(stringr::str_detect(measurement, "soil"), normals == "1981-2010") %>% pull(climate_id) %>% unique() ``` ``` ## [1] "3070560" "1100119" "112G8L1" "5021054" "5021848" "8102234" "8403600" "8501900" ## [9] "8502800" "8202800" "8205990" "2403500" "6073960" "6104025" "6105976" "7040440" ## [17] "7042388" "4012400" "4019035" "4028060" "4043900" "4075518" ``` ## Understanding Climate Normals The measurements contained in the climate normals are very specific. To better understand how they are calculated please explore the following resources: - ECCC Climate Normals Calculations ([1991-2020](https://collaboration.cmc.ec.gc.ca/cmc/climate/Normals/Canadian_Climate_Normals_1991_2020_Calculation_Information.pdf) | ([1981-2010](https://collaboration.cmc.ec.gc.ca/cmc/climate/Normals/Canadian_Climate_Normals_1981_2010_Calculation_Information.pdf) | [1971-2000](https://collaboration.cmc.ec.gc.ca/cmc/climate/Normals/Canadian_Climate_Normals_1971_2000_Calculation_Information.pdf)) - [`weathercan` Climate Normals Codes](flags.html) - [ECCC Climate Normals Technical Documentation](https://www.canada.ca/en/environment-climate-change/services/climate-change/canadian-centre-climate-services/display-download/technical-documentation-climate-normals.html) - [`weathercan` Climate Normals Glossary](glossary_normals.html)